The NP-completeness of authomorphic colorings
نویسنده
چکیده
Given a graph G, an automorphic edge(vertex)-coloring of G is a proper edge(vertex)-coloring such that each automorphism of the graph preserves the coloring. The automorphic chromatic index (number) is the least integer k for which G admits an automorphic edge(vertex)coloring with k colors. We show that it is NP-complete to determine the automorphic chromatic index and the automorphic chromatic number of an arbitrary graph.
منابع مشابه
Treedepth Bounds in Linear Colorings
Low-treedepth colorings are an important tool for algorithms that exploit structure in classes of bounded expansion; they guarantee subgraphs that use few colors are guaranteed to have bounded treedepth. These colorings have an implicit tradeoff between the total number of colors used and the treedepth bound, and prior empirical work suggests that the former dominates the run time of existing a...
متن کاملNegative results on acyclic improper colorings
Raspaud and Sopena showed that the oriented chromatic number of a graph with acyclic chromatic number k is at most k2. We prove that this bound is tight for k ≥ 3. We also consider acyclic improper colorings on planar graphs and partial ktrees. Finally, we show that some improper and/or acyclic colorings are NP-complete on restricted subclasses of planar graphs, in particular acyclic 3-colorabi...
متن کاملNear-Colorings: Non-Colorable Graphs and NP-Completeness
A graph G is (d1, . . . , dl)-colorable if the vertex set of G can be partitioned into subsets V1, . . . , Vl such that the graph G[Vi] induced by the vertices of Vi has maximum degree at most di for all 1 6 i 6 l. In this paper, we focus on complexity aspects of such colorings when l = 2, 3. More precisely, we prove that, for any fixed integers k, j, g with (k, j) 6= (0, 0) and g > 3, either e...
متن کاملAcyclic Coloring with Few Division Vertices
An acyclic k-coloring of a graph G is a mapping φ from the set of vertices of G to a set of k distinct colors such that no two adjacent vertices receive the same color and φ does not contain any bichromatic cycle. In this paper we prove that every planar graph with n vertices has a 1-subdivision that is acyclically 3-colorable (respectively, 4-colorable), where the number of division vertices i...
متن کاملThe chromatic sum of a graph: history and recent developments
The chromatic sum of a graph is the smallest sum of colors among all proper colorings with natural numbers. The strength of a graph is the minimum number of colors necessary to obtain its chromatic sum. A natural generalization of chromatic sum is optimum cost chromatic partition (OCCP) problem, where the costs of colors can be arbitrary positive numbers. Existing results about chromatic sum, s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Discussiones Mathematicae Graph Theory
دوره 30 شماره
صفحات -
تاریخ انتشار 2010